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Antiviral treatment for the control of
pandemic influenza: some

logistical constraints

N. Arinaminpathy* and A. R. McLean

Institute for Emergent Infections of Humans, James Martin 21st Century School,
Department of Zoology, University of Oxford, Oxford OX1 3PS, UK

Disease control programmes for an influenza pandemic will rely initially on the deployment of
antiviral drugs such as Tamiflu, until a vaccine becomes available. However, such control
programmes may be severely hampered by logistical constraints such as a finite stockpile of
drugs and a limit on the distribution rate. We study the effects of such constraints using a
compartmental modelling approach.

We find that the most aggressive possible antiviral programme minimizes the final
epidemic size, even if this should lead to premature stockpile run-out. Moreover, if the basic
reproductive number R0 is not too high, such a policy can avoid run-out altogether. However,
where run-out would occur, such benefits must be weighed against the possibility of a higher
epidemic peak than if a more conservative policy were followed.

Where there is a maximum number of treatment courses that can be dispensed per day,
reflecting amanpower limit onantiviral distribution, our results suggest that sucha constraint is
unlikely tohave a significant impact (i.e. increasing the final epidemic size bymore than10%), as
long as drug courses sufficient to treat at least 6% of the population can be dispensed per day.

Keywords: mathematical modelling; influenza; pandemic; antiviral treatment
1. INTRODUCTION

The H5N1 virus, with its demonstrated virulence in
humans, has drawn widespread attention to the threat
of an influenza pandemic (Li et al. 2004; Beigel et al.
2005). Should the virus acquire the ability to easily
infect humans, the resulting pandemic would have far-
reaching consequences.

Although vaccines are an important means of control
for seasonal influenza, with the emergence of a novel
pandemic strain, no effective vaccine would be available
for at least the first six months (Fedson 2003; Webby &
Webster 2003). During this period, control strategies
would depend largely on social distancing (e.g. closure of
schools and workplaces; UK Health Departments 2005;
US Department of Health and Human Services 2005)
and stockpiles of antiviral drugs, such as Tamiflu
(oseltamivir phosphate).

The role envisaged for Tamiflu in current pandemic
plans is chiefly to relieve symptoms in infected
individuals. However, there has also been discussion
on the use of antiviral drugs for targeted prophylaxis
(Longini et al. 2005; McCaw & McVernon in press). In
this paper we shall concentrate on the former, assuming
that an antiviral stockpile would be intended mainly for
treatment rather than prophylaxis. Clinical trials
with seasonal influenza have shown Tamiflu to reduce
orrespondence (nim.pathy@zoo.ox.ac.uk).
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infectiousness and the infectious period (Treanor et al.
2000; Ward et al. 2005), as long as treatment
commences within the first 48 hours of symptoms
developing. The efficacy of Tamiflu against H5N1 is not
yet known; nonetheless, by lowering infection rates, the
use of Tamiflu in the community also offers an
opportunity to limit the pandemic impact, for example
by reducing the overall number of cases.

Previous modelling work on antiviral drugs has
addressed such issues as the treatment of health care
workers and children (Barnes et al. in press). Ferguson
et al. (2005) and Longini et al. (2005) used intensive
numerical simulations to consider the effect of targeted
antiviral treatment, in combination with other interven-
tion strategies. However, simpler compartmental models
have the advantage of being more transparent (Arino
et al. 2006). Gani et al. (2005) used this approach to
consider optimal targeting strategies for various stockpile
sizes. Such models can also be more amenable to under-
standing the effect of uncertainties such as the efficacy of
antiviral drugs. In this paper we use this approach to
consider the implications of antiviral run-out, as well as
the effect of limited manpower in antiviral distribution.
2. PUBLIC HEALTH ISSUES

In the ideal antiviral (AV) scenario, there is an
unlimited stockpile, a capability to treat an unlimited
number of cases per day and a perfectly efficacious drug.
J. R. Soc. Interface (2008) 5, 545–553
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Figure 1. Summary of the basic model, where fZb(ITCIN). A
proportion a of infected cases receive treatment (class IT) and
recover in 1/gT days. The remainder of infected cases (class
IN) recover in 1/gN days, where gTOgN.
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None of these will apply in practice, and this prompts
the following questions: for given infection and drug
efficacy parameters, what stockpile would be sufficient?
With a stockpile that is potentially insufficient, is it
preferable to adopt an ‘aggressive’ AV programme,
dispensing treatment to as many infected cases as
possible, or a more ‘conservative’ one, limiting the
distribution rate to try and avoid run-out? If there were
a limit on the number of cases that can be treated per
day, would this have a significant impact?

Once a pandemic-capable strain evolves and starts
to spread widely, containment would be unfeasible.
We therefore concentrate on the use of antiviral drugs
to reduce the impact of a pandemic. In particular, in
the absence of reliable data on the effect of AV
treatment on hospitalizations, we consider primarily
its effect in reducing the overall attack rate (final
epidemic size). Additionally, we consider the effect of
an AV programme in mitigating the ‘peak pandemic
impact’, which includes the following factors: (i)
reducing the peak prevalence eases the pressure on
public health services; (ii) delaying the epidemic peak
affords more time to acquire vaccines or to replenish
the AV stock.
3. THE BASIC MODEL

We use a compartmental modelling approach, as
developed by Kermack & McKendrick (1927). We
write S for the proportion of the population that is
susceptible, IT for the proportion who are infected and
receiving treatment, IN for the proportion who are
infected and not receiving treatment, RT for the
proportion who have recovered via treatment and RN

for those who have recovered without treatment.
Regarding AV distribution, an ideal scenario might

be that all infected cases receive treatment within
48 hours of developing symptoms. This is infeasible in
practice; a certain proportion of cases would be
asymptomatic (Couch et al. 1971), and thus tend to
escape detection before they can infect others. More-
over, for a very limited stockpile, a policy decision may
be taken to preferentially treat those most at risk from
secondary complications, such as the elderly, and those
with pre-existing conditions (UK Health Departments
2005). We write a for the proportion of infected cases
receiving treatment within 48 hours of symptoms. This
quantity, the ‘AV coverage’, provides a convenient way
of representing the AV programme.

We assume that the effect of treatment is to reduce
the infectious period, so that those receiving treat-
ment recover in 1/gT days, and the remainder of
infected cases recover in 1/gN days, where gT>gN.
The model is summarized schematically in figure 1; we
assume a constant population size and neglect births
and deaths. For simplicity, we do not explicitly
include disease-related deaths—to do so is equivalent
to modifying the definition of gN and gT to include
removal of infected cases due to mortality (i.e. writing
them as recovery rate C death rate), and this does
not alter the qualitative behaviour of the model.
Where disease-related deaths may be significant, all
J. R. Soc. Interface (2008)
variables are interpreted as proportions of the initial
population size.

The governing equations are as follows:

_S ZKbSðIT CINÞ; ð3:1Þ
_IT ZabSðIT CINÞKgTIT; ð3:2Þ

_IN Z ð1KaÞbSðIT CINÞKgNIN and ð3:3Þ
_RT ZgTIT; 0%a%1; ð3:4Þ

where b is the infection rate and _S denotes dS/dt.
Seeding the epidemic by a small perturbation IN0 to the
disease-free state in class IN, the initial conditions are

IN Z IN0/1; S ZS0 Z 1K IN0 and

IT ZRT Z 0 at t Z 0: ð3:5Þ
For simplicity, we take S0z1, IN0z0 in the calculations
to follow. The number of AV courses that have been
dispensed at any given time is RTCIT (i.e. a sum of
those recovered and those recovering through treat-
ment), and so a stockpile sufficient to treat a proportion
M of the population is exhausted when RTCITZM.
Where this occurs in the numerical calculation, we set
aZ0 for all subsequent time.
4. REPRODUCTIVE NUMBERS

The basic reproductive number R0 is the average
number of secondary cases arising from one index case,
in a wholly susceptible population. We define the
‘treated’ reproductive number Ra as the corresponding
quantity, but, in the presence of an AV programme,
with AV coverage a. Following van den Driessche &
Watmough (2002), the next-generation matrix is

ab=gT ab=gN

ð1KaÞb=gT ð1KaÞb=gN

 !
: ð4:1Þ

Since this has rank 1, its spectral radius is equal to its
trace, giving

Ra Za
b

gT

Cð1KaÞ b

gN

and R0 Z
b

gN

: ð4:2Þ

There are two possibilities for a pandemic-capable
strain: Ra!1!R0 and 1!Ra!R0. The first corre-
sponds to successful containment and is a particularly
simple case, where IT, IN remain small and Sz1
throughout. In this paper we concentrate instead on
the second scenario, that is where an epidemic still
occurs in the presence of an AV programme, but with a
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smaller reproductive number than in the case of no
treatment.
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Figure 2. Plots of AV usage U (or minimum required
stockpile) versus coverage a, for different values of R0.
5. PARAMETERS

We note that the lower gT is, the less efficacious the
drug is in reducing the infectious period (i.e. residence
time in the infected class). We follow Gani et al. (2005)
in assuming that the effect of antiviral treatment is to
reduce the infectious period from 4 to 2.5 days. In other
words, gNZ0.25, gTZ0.4.

It is not possible to determine R0 in advance for a
pandemic strain. From past pandemics, however, R0

has been well approximated by the reproductive
number in the early stages of disease spread, when
there was almost no immunity in the population. For
the second ‘autumn’ wave of the 1918 pandemic, the
reproductive number has been estimated to be 2–3
using excess mortality (Mills et al. 2004) and daily case
notification data (Chowell et al. 2007). For the first
wave, it has been estimated at 1.5 (Chowell et al. 2006).
Accordingly, we consider a range of values for R0: 1.5, 2
and 3, corresponding to values for b: 0.375, 0.5 and 0.75,
respectively.
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Figure 3. Illustration of different run-out scenarios. (a) Stock-
pile of 10% and R0Z1.5. There are precisely two values of AV
coverage, marked a1 and a2, such that U(a)ZM. Run-out may
be avoided by a!a1 or by aOa2. (b) Stockpile of 30% and
R0Z2, 3. Here R0 is sufficiently large for the antiviral usage
U(a) to be monotonically increasing with respect to a. Run-out
can be avoided only by a sufficiently low AV coverage.
6. MINIMUM REQUIRED STOCKPILE:
CONSTANT a

We first consider the minimum sufficient stockpile for
given infection and AV parameters. This is the same as
the total AV usage with an unlimited stockpile, which
we denote by UZlimt/NRT. Adding equations (3.1)
and (3.2) gives a _SC _ITZK_RT. Integrating and letting
t/N yields

UðaÞZaRN; ð6:1Þ

where RNZ1Klimt/NS is the serologic attack rate
(final epidemic size). As shown in appendix A.1,
equation (6.1) can be used to show that RN is a
solution of the equation

RNZ 1KexpðKRaRNÞ; ð6:2Þ
allowing us to determine U as a function of a in (6.1).
We note that equation (6.2) is analogous to the final-
size equation for an ‘untreated’ epidemic as discussed,
for example, by Murray (1989, p. 614), where Ra is
replaced by R0. Figure 2 shows plots of U(a), for
different values of R0. For a given stockpile M and AV
coverage a, run-out occurs if M exceeds U(a).

It is of interest to note that U(a) is not necessarily a
monotonically increasing function of a, i.e. that an
aggressive AV policy is not necessarily linked with a
higher overall AV usage than a more conservative one.
In particular, in figure 2 when R0 is sufficiently low (e.g.
R0Z1.5, 2) there is a turning point in U(a), where it is
maximum. However, when R0 is sufficiently high (e.g.
R0Z3), an increase in AV coverage a is always
associated with an increase in overall AV usage.

This has the following implications for a limited
stockpile M. Consider the situation illustrated in
figure 3a, where there exists a turning point in U(a)
in the range 0!a!1, and the stockpile M is less than
the maximum possible AV usage but greater than the
J. R. Soc. Interface (2008)
AV usage with 100% coverage (i.e. U(1)). Then there
are precisely two values of a, say a1, a2, where a1!a2,
such that U(a)ZM. Therefore, run-out may be
avoided by a sufficiently aggressive programme
(i.e. aOa2), as well as by a sufficiently conservative
programme (i.e. a!a1). This is significant from a
disease control point of view: it is straightforward to
show, using equations (4.2) and (6.2), that, as long as
run-out is avoided, increasing a decreases the attack
rate RN, by lowering the treated reproductive
number, Ra. Thus, the former aggressive strategy
above represents the more efficient use of a stockpile
M, delivering a lower attack rate.

On the other hand, whenM is less than U(1), there is
precisely one value of a for which U(a)ZM, as
illustrated in figure 3b. In this case, run-out can only
be avoided by a sufficiently conservative programme.

http://rsif.royalsocietypublishing.org/
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We can show that, with R0O1, U(a) has a turning
point in the range 0!a!1, if and only if

R0 1K
ln R0

R0K1

� �
!R0K

b

gT

: ð6:3Þ

The r.h.s. is the drug efficacy in reducing infectiousness:
it is the reduction, due to treatment, in the average
number of secondary cases arising from one clinical
case. This result is derived in appendix A.2. If R0 is
sufficiently high to invalidate this inequality, then, with
a limited stockpile, R0 is too high with respect to the
drug efficacy for it to be possible to avoid run-out by
maximizing a.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
AV coverage, a 

Figure 4. Attack rate versus AV coverage a. For R0Z1.5 and
a stockpile MZ0.1.
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Figure 5. Numerical plots of epidemic peak properties, where
prevalence is ITCIN. The ‘kinks’ in both plots arise because,
for sufficiently high a, the epidemic peak occurs after run-out.
Parameters: gTZ0.4, gNZ0.25, MZ0.2 and R0Z0.25. (a)
Peak height and (b) peak timing.
7. RUN-OUT SCENARIO: GENERAL a

We now consider the implications of run-out. Figure 4
shows a plot of attack rate versus a, for the parameters
used in figure 3a. The attack rate is monotonically
decreasing with respect to a, except for an interval
where it is constant. Figure 3a confirms that this
interval is associated with AV run-out.

Indeed, it can be shown analytically that the attack
rate in a run-out scenario is a solution of the equation

RNZ 1KA expðKR0RNÞ; ð7:1Þ
where

AZ exp M R0K
b

gT

� �� �
: ð7:2Þ

This result is derived in appendix A.1.2 and is indeed
independent of the AV coverage a. Regarding the role
of the constant A, we note that when AZ1 we recover
the familiar expression for the attack rate for an
epidemic without any AV treatment (Murray 1989,
p. 614). Moreover, parameters associated with the AV
programme (b, M, gT) are all contained in A. Thus, A
represents the effect of the AV programme, on reducing
the attack rate.

However, in a run-out scenario, a can affect the
epidemic peak properties. Figure 5 shows numerical
plots for the epidemic peak timing and its height; it
suggests that, in this model, increasing a can have the
effect of delaying the epidemic peak, as well as reducing
its height.
8. EXTENDED MODEL

In order to explore the robustness of these results, the
calculations above have been extended to a more
biologically detailed model, one that explicitly incor-
porates the clinical course of infection, as well as
broadening the possible effects of AV treatment. Cases
of influenza can start being infectious before developing
symptoms. Moreover, some infections are subclinical,
i.e. never developing symptoms. Longini et al. (2005)
estimate the mean latent period (i.e. time from
infection to infectiousness) to be 1.2 days, and that
individuals subsequently develop symptoms after an
average of 0.7 days. It is also estimated that 33% of
infected cases will be subclinical.

Accordingly, we assume that a proportion p of
infected cases ultimately develop clinical symptoms.
These cases are first latent (class L1), and after 1/s days
J. R. Soc. Interface (2008)
become infectious but pre-symptomatic (class L2).
Subsequently, after 1/d days, they develop symptoms:
a proportion a of these cases receives treatment (class
ICT) to recover in 1/gT days. The remainder (class ICN)
recover in 1/gN days, where again 0!gN!gT. Overall,
therefore, we assume that cases without symptoms do
not receive treatment.

The subclinical cases follow a similar course to clinical
cases, being first latent (class L0

1) and after 1/s0 days
becoming infectious (class L0

2). After another 1/d0 days,
they enter class IAN, who are also subclinical and
infectious. Although there is no clinical distinction
between L0

2 and IAN, we use this structure to preserve
symmetry between the clinical and subclinical courses of
infection. Infected cases in class IAN recover in 1/gN days.

We assign an infection rate bN to all cases that are
infectious but without symptoms, i.e. classes L2, L

0
2 and

IN; these infected cases receive no treatment. Moreover,
we now assume that the effect of AV treatment is not
only to reduce the infectious period, but also to reduce
infectiousness. Thus, we assign infection rates bCT and

http://rsif.royalsocietypublishing.org/
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bCN to classes ICT and ICN, respectively, where
0!bCT!bCN.

This model is summarized in figure 6. The model
equations are

_S ZKSf ; ð8:1Þ

_L1 Z pSfKsL1; _L
0
1 Z ð1KpÞSfKs0L0

1; ð8:2Þ

_L2 Z sL1KdL2; _L
0
2 Z s0L0

1Kd0L0
2; ð8:3Þ

_ICT ZadL2KgTICT; _IAN Z d0L0
2KgNIAN; ð8:4Þ

_ICN Z ð1KaÞdL2KgNICN and ð8:5Þ

_RCT ZgTICT; ð8:6Þ

where

f Z bCTICT CbCNICN CbNðL2 CL0
2 CIANÞ: ð8:7Þ

If the disease is seeded by a perturbation in the class L1

(say) to the disease-free state, then the initial con-
ditions are

S Z S0; L1 Z 1KS0/1;

L2 Z ICT Z ICN ZL0
1 ZL0

2 Z IAN ZRCT Z 0

when t Z 0: ð8:8Þ

Once again, for simplicity in the analytical calculations,
we shall take S0z1, L1z0. We note that the basic
model is a limiting case of the extended model: the
former can be retrieved from the latter by taking pZ1,
bCTZbCNZb and letting s, d/N in (8.1)–(8.7).
9. REPRODUCTIVE NUMBERS

Setting aZ0, we follow van den Driessche &Watmough
(2002) once again to find R0. As in the basic model, the
next-generation matrix has rank 1, so that the spectral
radius is equal to its trace, giving

R0 Z p
bCN

gN

C
bN

d

� �
Cð1KpÞ bN

d0
C

bN

gN

� �
: ð9:1Þ

Similarly, when a is non-zero, we find for the treated
reproductive number,

Ra ZR0Kpa
bCN

gN

K
bCT

gT

� �
: ð9:2Þ
J. R. Soc. Interface (2008)
10. MINIMUM REQUIRED STOCKPILE

We assume constant a and an unlimited stockpile. As
shown in appendix A.1.1, the total AV usage is given by

UðaÞZ paRN ð10:1Þ

and the overall attack rate RN is a solution of the
equation

RNZ 1KexpðKRaRNÞ; ð10:2Þ
the same as equation (6.2) for the basic model. The
discussion for the basic model, on the maximum inU(a)
and the possibility of avoiding run-out with a suf-
ficiently high a, also applies here. In particular, we have
that, with R0O1, U(a) has a turning point in the range
0!a!1 if and only if

R0 1K
ln R0

R0K1

� �
!p

bCN

gN

K
bCT

gT

� �
; ð10:3Þ

as derived in appendix A.2. If R0 is sufficiently high to
invalidate this inequality, then U(a) is monotonically
increasing for 0%a%1 and it is not possible to avoid
run-out by maximal coverage. Here again the import-
ant parameters are R0 and the drug efficacy in reducing
infectiousness, where the relevant measure of drug
efficacy is the reduction, due to treatment, in the
average number of secondary cases arising from a single
clinical case.
11. RUN-OUT SCENARIO

Relaxing the assumption of constant a, it can be shown
that, where a stockpile sufficient to treat a proportion
M of the population is exhausted before the end of the
epidemic, the overall attack rate RN is a solution of the
equation

RNZ 1KA expðKR0RNÞ; ð11:1Þ

where

AZ exp M
bCN

gN

K
bCT

gT

� �� �
: ð11:2Þ

A derivation of this result is given in appendix A.1.2.
Once again we have that, after run-out, the attack rate
depends not on the AV coverage, but on the stockpile,
and the drug efficacy in reducing infectiousness.

However, the behaviour of the epidemic peak shows
an interesting departure from the basic model. Assum-
ing constant a once again, we consider ICTCICN, the
proportion of the population that is symptomatic, since
it is these infected cases that pose the most immediate
challenge to health services. Figure 7a,b shows numeri-
cal plots of the epidemic peak height and the peak
timing, respectively, where we have used Longini’s
parameter estimates, stated above, for illustration.
Comparing peak timing with figure 5b, it appears to
remain true in the extended model that, whether the
stockpile is exhausted or not, a higher AV coverage
leads to a delayed epidemic peak. However, considering
the peak height, whereas in figure 5a it is a decreasing
function of a, figure 7a shows an example of a case
where peak height can also slightly increase with

http://rsif.royalsocietypublishing.org/
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Figure 7. Numerical plots of epidemic peak properties for the
extended model, measuring ICTCICN. The ‘kinks’ arise
because, for sufficiently high a, the peak occurs after run-
out. (a) Peak height versus AV coverage. In the run-out range
(aO0.32), peak height is an increasing function of a. (b) Peak
timing in days versus AV coverage. Parameters: pZ0.67,
sZs0Z1/1.2, dZd 0Z1/0.7, gTZ0.4, gNZ0.25, bCTZ0.3,
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increasing coverage. This effect also occurs with
different values of s and is stronger with smaller values
of d. It occurs only where the stockpile is exhausted, but
suggests a potential trade-off, in an aggressive AV
programme, for the benefits of minimizing the number
of cases and delaying the epidemic peak.
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

0.01

0.02

0.03

R0

C
f

Figure 9. Minimum required distribution capacity Cfail, to
ensure that attack rate is within 10% of the case of unlimited
distribution capacity, versus R0, for different values of gT.
The ‘termination’ of each curve is where R0 is sufficiently high
that the percentage difference in attack rate between even the
two most extreme cases, CZ0 and C/N, is less than 10%.
gNZ0.25.
12. LIMITED DISTRIBUTION CAPACITY

We now consider the case of a maximum in the number
of treatment courses that can be dispensed per day, due
to limits on manpower. We refer to this as a ‘limited
distribution capacity’. Returning to the basic model,
when there are few infected cases at the beginning of an
epidemic, a proportion a0 receive treatment. As the
epidemic progresses, however, there is a limit C to the
number of doses of treatment that can be dispensed per
day, as a proportion of the population. In other words,
we require

a/a0 as IT CIN/0 and

ðIT CINÞa/C as IT CIN/1: ð12:1Þ

A convenient choice of such a is

aZ
C

IT CIN
tanh

a0ðIT CINÞ
C

� �
: ð12:2Þ

WhenC/Nwe have constant aZa0, which will be our
baseline in discussing the effect of finite C. We also
assume an unlimited stockpile, since the post-run-out
results above apply for any a, and hence also hold in
this case.

Assuming R0Z2, attack rates were computed
numerically for different values of a0 and C and are
plotted in figure 8a. The attack rate can depend
sensitively on C, when the latter is sufficiently small.
This is because a decrease in a during the course of an
epidemic is self-reinforcing: it leads to an increase in
J. R. Soc. Interface (2008)
infections, compared with the case of constant a, which
in turn reduces a still further.

However, if C is sufficiently high, it has no significant
effect on the attack rate, nor on the course of the
epidemic, as shown by a comparison of the cases CZ
0.25 and 0.1 in figure 8b. To quantify this, we say that a
limited distribution capacity ‘fails’ if it results in an
increase in the attack rate of greater than 10%,
compared with the case of unlimited distribution
capacity (constant a). We choose this figure as an
estimated lower bound on the increase in attack rate
that may be considered significant in terms of policy.
Numerically, for a given a0 we calculate the value of C
yielding a 10% increase in the attack rate, and
maximize this over a0, to give Cfail. Thus, for given
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AV and infection parameters, any AV programme
capable of dispensing treatment to at least a proportion
Cfail of the population would avoid failure, whatever the
value of a0. Figure 9 shows plots of Cfail versus R0, for
different values of gT. In all of the curves, Cfail is a
decreasing function of R0 if the latter is sufficiently
high, and this is because in such cases there is little
percentage difference in attack rate between the cases of
limited and unlimited distribution capacity. Overall,
figure 9 suggests that, with R0 in the range of 1–3
estimated from past pandemics, distribution ‘failure’
would be avoided as long as there is a capability of
distributing drugs to at least 6% of the population per
day. This value is decreased by taking a threshold
higher than 10% for failure and vice versa.
13. SUMMARY

Much of the previous modelling work on the use of AVs
in a pandemic has concentrated on containment at the
source (Ferguson et al. 2005; Longini et al. 2005), and
on the use of drugs in conjunction with other interven-
tions such as case isolation and air traffic reduction
(Flahault et al. 2006; Colizza et al. 2007). Should
containment fail, however, a widespread AV pro-
gramme by itself would have a ‘society-wide’ effect by
reducing the disease reproductive number, and such an
effect has also been noted by Gani et al. (2005). Using a
simple model we have explored some implications of
this effect, with two types of logistical constraints: a
limited stockpile and a limited distribution capacity.

We find that the most aggressive possible AV
programme can offer several benefits: first, it minimizes
the overall attack rate, even if it should lead to run-out.
A conservative programme, while avoiding run-out,
would dispense fewer courses of treatment overall,
without the society-level benefit of widespread aggres-
sive AV treatment and would thus result in a higher
epidemic size. Second, ifR0 is not too high, a sufficiently
aggressive AV programme can avoid run-out
altogether, by lowering disease spread to such an
extent that the required AV stockpile is also sufficiently
lowered. We have derived a condition on R0, in terms of
the drug efficacy, for this to be possible. Third, our
numerical results suggest that, whether run-out occurs
or not, an aggressive AV policy would delay the
epidemic peak. In practical terms, this could buy
valuable time for the development of an effective
vaccine, or to replenish the stockpile.

Nonetheless, an aggressive AV policy is not without
risk: where it would lead to run-out, we have seen an
instance of an aggressive programme leading to a higher
epidemic peak than a more conservative one. Such an
effect would place a greater peak burden on health
services, and further work is required to determine
under which conditions this effect could occur. Another
potential issue with an aggressive programme, which
we have not considered in detail here, is the emergence
of drug resistance (Lipsitch et al. 2007). Indeed, cases
have been recorded of resistance of H5N1 against
Tamiflu in humans (De Jong et al. 2005). The benefits
discussed above must therefore be weighed against the
possibility of these effects occurring.
J. R. Soc. Interface (2008)
Even with an unlimited stockpile, however, an AV
programme would be constrained by an upper limit on
the number of treatment courses that can be dispensed
per day. We have found that the attack rate and peak
prevalence can increase significantly, if this ceiling in
distribution is reached; however, for the parameters we
have adopted here, a capability of dispensing courses of
drugs to at least 6% of the population per day should
avoid this occurring. This low threshold suggests that,
in practice, it would be unlikely for a limited
distribution capacity to be a significant issue.

We gratefully acknowledge the financial support for this
project from the James Martin 21st Century School at Oxford
University.
APPENDIX A. TECHNICAL SUPPORTING
INFORMATION

Note. The basic model is a limiting case of the extended
model presented above: the former follows from the
latter by allowing s, d/N, and setting pZ1, bCTZ
bCNZb. For brevity, we therefore present the following
derivations for the extended model only, and briefly
show how the results from the basic model can be
obtained from these.
A.1. Final epidemic size

Relaxing the assumption of constant a, we derive a
‘final-state equation’ that is valid, whether the stock-
pile is exhausted or not. We work on equations (8.1)–
(8.6) of the extended model. For simplicity in the
calculations to follow, we shall approximate the initial
conditions by Sz1 and all other variables being 0 at
tZ0. Dividing (8.1) by S and integrating,

Kln SðtÞZ
ðt
0
bCTICT CbCNICN

CbN L2 CL0
2 CIAN

� �
dt: ðA 1Þ

The first integral term on the r.h.s. is proportional to
RCT, from (8.6). Letting t/N, and noting that
limt/NSZ1KRN,

Klnð1KRNÞZ
bCT

gT

lim
t/N

RCT C

ðN
0
bCNICN

CbN L2 CL0
2 CIAN

� �
dt: ðA 2Þ

To find the remaining terms on the r.h.s., we note, from
(8.1)–(8.5), that

p _SC _L1 C _L2 ZKdL2 ðA 3Þ

p _SC _L1 C _L2 C _ICT C _ICN ZKgNICNKgTICT; ðA 4Þ

ð1KpÞ _SC _L
0
1 C _L

0
2 ZKd0L0

2 and ðA 5Þ

ð1KpÞ _SC _L
0
1 C _L

0
2 C _IAN ZKgNIAN: ðA 6Þ

Integrating each of these equations in turn, letting
t/N and noting that all infected classes tend to 0 in
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this limit,

pRNZ d

ðN
0
L2 dt;

pRNZgN

ðN
0
ICN dtC lim

t/N
RCT and

ðA 7Þ

ð1KpÞRNZ d0
ðN
0
L0

2 dt;

ð1KpÞRNZgN

ðN
0
IAN dt:

ðA 8Þ

Substituting these terms into (A 2) and recalling (9.1)
yield the final-state equation

lnð1KRNÞZ
bCN

gN

K
bCT

gT

� �
lim
t/N

RCTKR0RN: ðA 9Þ

As an aside, we can show with the same working that
this equation applies also for the basic model, but with
bCNZbCTZb.

It is now straightforward to distinguish between the
cases of sufficient and insufficient stockpiles.
A.1.1. Sufficient stockpile. Where the stockpile avoids
exhaustion, we have, from (8.1)–(8.4),

aðp _SC _L1 C _L2ÞC _ICT ZKgTICT: ðA 10Þ
Assuming now constant a, integrating and letting
t/N, we find

lim
t/N

RCT Z paRN: ðA 11Þ

By definition, the l.h.s. is U(a), and so this is a
derivation of equation (10.1) for the overall AV usage.
Substituting (A 11) into (A 9) and rearranging,

RNZ 1KexpðKRaRNÞ; ðA 12Þ
where Ra is given by (9.2). The corresponding result
(6.2) for the basic model is obtained by taking Ra given
in (4.2).
A.1.2. Insufficient stockpile. Where a stockpile suf-
ficient to treat a proportion M of the population is
exhausted before the end of the epidemic, we have
simply limt/NRCTZM . Substituting into (A 9) and
rearranging this gives

RNZ 1KA expðKR0RNÞ; ðA 13Þ
where

AZ exp M
bCN

gN

K
bCT

gT

� �� �
; ðA 14Þ

independent of a. The corresponding result (7.1), (7.2)
for the basic model is obtained by taking bCNZbCTZb,
and R0 as given in (4.2).
A.2. Maximizing antiviral usage with
respect to a

We seek to maximize
UðaÞZ paRN; ðA 15Þ

where p is a constant, set to unity in the basic model,
RN is given by (A 12), and Ra by (9.2).

First, it follows from (A 15) that dU/daZ0 when

RNZKa
dRN

da
: ðA 16Þ
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Differentiating bothRN andRawith respect to a yields,
respectively,

dRN

da

1

1KRN
KRa

� �
ZRN

dRa

da
and ðA 17Þ

dRa

da
ZKp

bCN

gN

K
bCT

gT

� �
: ðA 18Þ

Using (A 18) in the r.h.s. of (A 17), substituting for
dRN=da using (A 16) and rearranging this gives

RNZ 1K
1

R0

: ðA 19Þ

Substituting for RN into (A 12),

Ra Z
R0 ln R0

R0K1
: ðA 20Þ

Using (9.2) to eliminate Ra in (A 20) and rearranging,
we can thus express the value of a at a turning point of
U(a) as

amax Z
1

p
R0 1K

ln R0

R0K1

� �
bCN

gN

K
bCT

gT

� �K1

: ðA 21Þ

For R0R1, this is a strictly increasing function of R0,
and amaxZ0 when R0Z1. It follows that, with R0R1,
we have 0!amax!1 if and only if

0!R0 1K
ln R0

R0K1

� �
!p

bCN

gN

K
bCT

gT

� �
: ðA 22Þ

The corresponding condition (6.3) for the basic model
is obtained by taking pZ1, bCNZbCTZb.
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